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Stable Joint Torque Optimization for Multiple Cooperating
Redundant Manipulator System
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In this paper, joint torque optimization for multiple cooperating redundant manipulators
rigidly handling a common object is considered. This work focuses on finding the optimal and
stable distribution of the operational forces of a multiple redundant manipulator system to the
individual manipulators. Two joint torque optimization schemes(local joint torque minimiza-
tion and natural joint motion) are formulated and compared. When a redundant manipulator
with its joints free is driven by its tip, a naturally inducing joint motion can be called ‘natural
joint motion’. From the simulation results of a system of three cooperating redundant mantpula-
tors, the natural joint motion scheme is shown to be better than the local joint torque
minimization scheme with regard to global torque minimization capability and the resulting
stability of motion. However, in order to guarantee the stability, the null space damping method
is required for the both schemes. The effectiveness of the null space damping method is
demonstrated by simulation. Additionally, the condition for the distribution of the operational
forces required to drive the given system along a natural joint motion trajectory is addressed.

Key Words :

Joint Torque Optimization, Multiple Cooperating Manipulators, Null Space

Damping Method, Natural Joint Motion

1. Introduction

Cooperative use of multiple manipulators(or
fingers) will allow the performance of more
industrial applications than can currently be
undertaken using single manipulators. Such sys-
tems can provide greater load capacity, better
manipulation capability, and higher flexibility in
automated manufacturing. Typical example appli-
cations include transport of heavy material, fine
manipulation of objects and part assembly. A
number of works dealing with cooperative execu-
tion of tasks performed by muitiple cooperating
manipulators have appeared recently. One of the
main topics of this research is the problem of load
distribution.

The load distribution techniques for multiple
cooperating manipulator systems handling a com-
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mon object appearing in the literature may be
categorized into three groups: 1) Dynamic loads
of the common object are determined and dis-
tributed to the tip of each individual manipulator
according to a number of different criteria involv-
ing contact geometry between the common object
and the manipulators. Then, the optimally dis-
tributed forces/moments are directly added to the
dynamics of each manipulator by using the trans-
pose of Jacobian. This technique emphasizes the
object to be manipulated rather than the manipu-
lators and has been mainly used for fine manipu-
lation of the object(Kerr and Roth, 1986 ; Kumar
and Waldron, 1987). 2) Dynamic loads of the
common object are determined and directly incor-
porated into the dynamics of each manipulator
according to task dependent performance criteria
involving the total system geometry. This tech-
nique has been mainly used for transport of a
heavy object(Zheng and Luh, 1988 ; Pittelkau,
1988). 3) Reduced order dynamic models of the
total system are expressed in terms of the task
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coordinate set, or any system independent coordi-
nate set, by embedding the closed chain con-
straints into the motion of the system. The model
based dynamic loads required to complete the
given task are distributed according to cost saving
criteria involving the total system geometry. This
technique has also been used for transport of a
heavy object(Carignan and Akin, 1989 ; Hsu,
1989 ; Khatib, 1988 ; Kreutz and Lokshin, 1988).

Most of works, except Hu and Goldenbur-
2(1990), are not concerned with the utilization of
the redundancy of each manipulator with respect
to the given task motion. In this paper, local joint
torque optimizations for multiple cooperating
redundant manipulator system are performed,
which might belong to the third load distribution
category above. The method starts with the opera-
tional space dynamic formulation for multiple
cooperating redundant manipulators. From this
formulation, the unique matrix is obtained, which
maps the joint torque set of the individual manip-
ulators onto its corresponding task-dependent
operational forces. Based on this functional rela-
tionship, two joint torque optimization
schemes(local joint torque minimization and nat-
ural joint motion) are formulated. The stability
problem, commonly encountered in local joint
torque optimization of single redundant manipu-
lators, was also observed in the multiple cooperat-
ing redundant manipulator system through the
simulation of three 3 DOF cooperating manipula-
tors for planar translational operational trajec-
tory. In addition, the stability of algorithms using
the transpose of Jacobian among load distribu-
tion schemes above can not be guaranteed in
cased of redundant situation, in order to map the
optimally distributed operational forces(or con-
tact forces/moments) to each individual manipu-
lator. The instability is shown due that the use of
the transpose of Jacobian for distribution of the
operational forces leads to the natural joint
motion, which often tends to be unstable for a
long time trajectory. In order to eliminate the
stability problem, the null space damping
method(Kang and Freeman, 1993) is considered
for the multiple cooperating redundant manipula-
tor system. The effectiveness of the null space

damping method is demonstrated by simulation.

2. Operational Space Dynamic Model-
ing of Multiple Cooperating Redun-
dant Manipulators Rigidly Handl-

ing a Common Object

The configuration of the considered system is
shown in Fig. 1. The kinematic and dynamic
model of each individual manipulator is assumed
known. First, the object dynamics is constdered

as follows, the Newton-Euler equations for the

object are
f=moV —mog N
n=[lo)i+ wx{L]w) (2)

where m, and [/,] are the mass and inertia matrix
of the object and » and y are the position of the
operational point and the absolute angular veloc-
ity of the object, respectively.

Equations (1) and (2) are combined to yield the
operational forces required to move the object as

Fo:[alz;ku]il' + aCu (3)
where
«1.[molI] [0]
Lazd= " ] )

with the 33 identity matrix and null matrix
being [/] and [0], respectively
and

[l ] et

Now, the operational space dynamic model of
each individual manipulator(;=1, 2, ---, L) is

Fig. 1 Multiple cooperating redundant manipula-
tors handling a common object
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considered based on its joint space dynamic
model and the Jacobian, J,, which relates the
Cartesian velocity of the center of mass of the
object to the joint coordinate velocities of the ;%
manipulator. The joint space dynamic model of
the ;% manipulator is expressed as
To=[d%H]$+ C(ps ) i=1,2, -, L &)
where ¢; is joint coordiate vector of the ;*
manipulator with ;z,, [.[}] and C(¢: $.) being
its n < 1 joint load vector, n X n inertia matrix and
nx1 vector of Coriolis, centripetal and gravity
components, respectively.

The joint space dynamic model can be transfer-
red to the operational space dynamic model
according to the formulation given in Appendix
1. The effective operational forces due to the ;%
manipulator can be written as

Fi:[i[zfu]ii‘{“iCu (6)
where the m x m effective inertia matrix and the m
x 1 vector of Coriolis, centripetal and gravity
components of the ;* manipulator are, respective-
ly,

[z‘[zfu]:(fi[ilgo]‘l]zr)_l N
and

Co=~[IL]H (s 62

+H(JC(po 60

with (JH)7=[LE]1[4%]™ (8)
where H{$,, ¢.) is Coriolis and centripetal accel-
eration vector of the ;* manipulator.

The operational forces of the considered
robotic system can be expressed as a sum of
effective operational force contribution of each
individual manipulator and the common object as

F=Fy+SF.=[14)i+ C, ©)

where the corresponding mxm inertia matrix of
the given robotic system Is

2] =Lot]+ L) (10)

with the m x 1 vector of Coriolis, centripetal and
gravity components being

Cu=oCut 3.C. an

3. Functional Relationship Between
Joint Torques and Operational
Forces

Using Egs. (9)~(11), the operational forces
required to drive the given robotic system along
the desired operational space trajectory are
obtained from the control structure of the given
robotic system. The required joint torque is not
unique. The surjective function mapping the joint
torque set onto its effective operational forces can
be represented by augmenting the matrices,
(J)7, seen in Eq. (8).

Proposition 1) Any set of joint torques of
multiple redundant manipulators rigidly handling
a common object can be mapped onto its effective
operational forces by a unique transformation
matrix, [J7]7.

F:[]F]Tw
with
[m’:[(l N (DT --.ur)ﬂ

where the joint torque set

(12)

Z'¢:[1Z'J"','Z'¢T"'LT¢T]T
and
(IO =[Ld)T L :135)7

Proof: See Appendix 1.

The next two propositions are given to illus-
trate the condition for the distribution of opera-
tional forces to a joint torque set of the multiple
cooperating redundant manipulator system for
inducing natural joint motion. This condition
might help one to understand the natural behav-
ior of the total system and will be used for a joint
torque optimization scheme to follow.

Proposition 2) For a given operational force
vector(F), a system independent joint torque
set(r,) which is mapped by a transformation
matrix, (J#)7, drives the multiple cooperating
redundant manipulator system along the natural
Jjoint motion, where the Jacobian matrix (J&)7
relates the system’s operational space velocity
vector to the system independent joint velocity
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vector. (For clarity, see Eq. (19)).

Proof : When the multiple manipulators hold a
common object, closed chain mechanisms are
formed. Due to the closed chain constraint equa-
tions, the Lagrangian coordinates employed to
initially describe the system are divided into a
system independent coordinate set and a system
dependent coordinate set. Then, the equations of
motion of the given system can be completely
described in terms of system independent coordi-
nate set. Once the minimal kinematic and
dynamic models are obtained, the argument for
the natural joint motion of the multiple cooperat-
ing manipulator system can be treated in the same
fashion as that for a single redundant manipula-

tor. From the torque solution in Eq. (12) of Kang
and Freeman(1993), the proposition is evident.

(Q. E.D)
Proposition 3)
Te=JIF; i=1,2, -, L (13)
and
F=FR+F++F. (14)

Any joint torque set obtained from the opera-
tional force distribution according to Egs. (13)
and (14) drives the multiple cooperating redun-
dant manipulator system along the natural joint
motion.

Proof: The system independent actuating tor-
que set, 1, s effectively equivalent to the corre-
sponding Lagrangian torque set, r,, in that both
joint torque sets drive the system along the same
joint trajectories. The relationship is written as

=] (15)
where (J2) is Jacobian matrix relating the system
Lagrange coordinate set and the system indepen-
dent coordinate set.

The detailed expression of Eq. (15) can be
written as

179
=[(JOT (SO (JIDTY 1w (16)

LTy

where (,J¢) is the Jacobian matrix relating the

system Lagrange coordinate set of the ;% manipu-
lator and the system independent set(Refer to
Kang and Freeman(1994) for generation of the
Jacobians). Substituting Eq. (13) into Eq. (16)
yields

JIF
t=[GJOT - (JOT - (JO) JIF:

JIF,
=(JO' TR

+ o+ SDTIF A+ -

+ SO )
The Jacobian matrix relating the operational
space velocity vector to the system independent
coordinate velocity vector is obtained by sub-
stituting the internal joint kinematic relation-
ship(z. e., J£) into the first order kinematics of a
selected manipulator. Regardless of which manip-
ulator is taken to describe the operational space
motion, the same Jacobian matrix is obtained.
Therefore,

UD=N(JD="=]J(JD="-=](J).  (18)
Combining Eqgs. (13), (16) and (17) yields

.={J$'F. (19)
From Proposition 2), the joint torque set
obtained from this distribution scheme drives the
system along the natural joint motion. (Q.E.D)
4. Joint Torque Optimization

Equation (12) is a relationship between the
manipulator joint torques and the states of the
system which are specified by the trajectory of the
common object. What remains is to specify the
mantpulator joint torques required 1o achieve the
specified operational trajectory of the object
grasped by a group of redundant manipulators.
The underdetermined problem of solving the joint
torques from Eq. (12) allows one to optimize a
given performance criterion as an additional con-
trol constraint, which then uniquely determines
the joint torques. In this section, two local joint
torque optimization schemes are treated, based on
the functional relationship given in Eq. (12).
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They are the joint torque minimization scheme
and the natural joint motion scheme. The result-
ing torques of both schemes given here include
fictitious damping forces acting in the null space
of [J7]7, since stability problems are expected
here as they were in the joint torque optimization
schemes(Kang and Freeman, 1993) for single
redundant manipulators. In that paper, the condi-
tion for null space damping matrix to achieve the
positive damping is addressed.

4.1 Joint torque minimization(JTM)
.1
Min(5-77,)
subject to F=[]/]"z.

Incorporating null space dissipative forces, the
command torques become

tp=PF — K- B[] 1) ¢ (20)
where

Po=[Jr 717D (2
The particular solution seen in Eq. (20) provides
the local minimum joint torque norm required to
drive the total system along a specified opera-
tional trajectory.

4.2 Natural joint motion(NJM)

As seen in Nedungadi and Kazerounian(1989),
the joint torque optimization scheme may be
obtained using the inverse inertia weighted joint
torque norm as an objective function :

. 1 _

I VEAREN

subject to F=[J}]z,
where the inverse inertia matrix is constructed
such that its ;/* diagonal submatrix is the inverse
of the joint inertia matrix of the ;% manipulator.
The command torques, including the null space
component, in terms of the weighted Moore-
Penrose generalized inverse, is obtained as

To=PF (22)

where

Po=[IGI A I LS D (23)

and the inertia matrix, [ /%], is constructed such

that its ith diagonal submatrix is the joint inertia
matrix of the ;% manipulator.

Decoupling Eq.(22), the joint torques of the ;%
manipulator can be expressed as

To=J IR L F. i=1,2, -, L (29)

It is recognized from proposition 3) that the joint
torque solution in Eq. (24) drives the given sys-
tem along natural joint motion(here, F,=[, 7]/
»]'F in Eq. (13)). Equation (24) also shows
that the operational forces are distributed to the
individual manipulators according to their effec-
tive operational inertia contribution. It is also
shown that the effective operational inertia
matrix, obtained from the object dynamics, has
nothing to do with this distribution scheme.
Although the resulting torques drive the system
along natural joint motion, the fact that the joint
torque set corresponding to a given joint motion
is not unique due to the additional force redun-
dancy of multiple cooperating redundant manipu-
lators, give rises to a question: Does the opera-
tional inertia distribution scheme generates the
true minimum norm among all other possible sets
of joint torques which can drive the given system
along the natural joint motion? This question
leads to the consideration of the following joint
torque optimization scheme. It is assumed that the
given system makes natural joint motion. With
the aid of Proposition 3), the joint torque optim-
ization scheme for natural joint motion is refor-
mulated as

. /1
Mm<-2~z-{z-¢>
subject to ,r,=JFF; i=12, -, L
L
Using the [ x| vector of Lagrange multipliers, A,
and substituting Eq. (25) into the objective func-

tion, the augmented objective function, /, can be
written as

lzg%FzT]J,TFi+AT(F—;F,v)‘ (26)

The problem is now reduced to determining the
minimum solution of the unconstrained objective
function, /, in terms of the independent parame-
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ters, A and F; (=1, 2, ---, L). This requires that
ol

L= JJIF, — A= -

Ejg) ]1]: ;A 0 L, 29 . L (27)
and

Wai—— — L}“ o=

6/1 F 1:1F1 0 (28)

Assuming that there is no kinematic degeneracy
in any of the individual manipulators, solving Eq.
(27) for F; yields

Fi=({JJD'A =12, -, L (29)
Substituting Eq. (29) into (28) and solving for A
gives

A=(EUIDNF. (30)
Substituting Eq. (30) into (29) yields

Fe=(JD NI F

1=1,2, -, L. 30

Substituting Eq. (31) into (25), the joint torques
required to satisfy the objective function are

2o =JIID N ST ).
=1, 2, -, L

From Appendix 2., the physical interpretation of
the force distribution of Eq. (31) is that the
operational forces are distributed to the individ-

(32)

ual manipulators according to their effective
operational stiffness contribution, for the case in
which all joints of the given system are assumed
to have equal motor stiffness. Based on this
physical interpretation, Eq. (32) can be written as

Tp=JILKRILKE]TF i=1,2 - L (33)
where the effective operational linear stiffness
matrix of the ;* manipulator is

LK&I=(JD7" i=12 - L (3
with the total effective operational linear stiffness
matrix of the system being by

[K&)= Z(JD (35)

This solution shows that the local torque mini-
mum for natural joint motion is obtained from
the distribution of the operational forces to the
individual manipulators according to their opera-
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tional stiffness contribution rather than their
operational inertia contribution. Incorporating
the null space damping forces, which satisfy the
stability condition(seen in Kang and Freeman,
1993), the command torques from this scheme
become

ily :]z'f[1'Kz;ku][iKziku]7lF
'—Kd{[[]A]z'r(t]lrr)r}[i];(ﬁ]éi'
i=1,2, -, L (36)

In this section, the joint torque minimization
and natural joint motion schemes are presented
for the desired performance : the resulting torques
are globally stable and have good torque minim-
ization capability. The performances of the joint
torque minimization scheme(Eq. (20)) and the
natural joint motion scheme(Eq. (36)) will be
simulation

compared through the following

results.

5. Numerical Simulation and
Discussion

The joint torque minimization and natural
joint motion schemes, for both the undamped and
damped cases, are simulated for a long time
circular trajectory. In this example, the simulated
manipulator system, seen in Fig 2, consists of

3rd manipulalor

I'st manipulator

2nd manipulator

Fig. 2 Three cooperating redundant manipulators
to the X-Y task space
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three cooperating 3R planar manipulators operat-
ing in X-Y task space without gravity. Each link
is modeled as a thin uniform rod with a length of
1.0 m and a mass of 10 kg. The simulated desired
hand trajectory is a circular path with high accel-
eration as followings:radius = 0.5m, %=
—radius z’cos(xt) m/s? and j = —radius z%sin
(7t) m/s% The total simulation interval is 4 sec,
completing 2 periodic cycles. The initial state of
the manipulator is ¢=[¢f, ¢, pI]7=[—64.34,
128.68, —34.34, 115.66, 128.68, —94.34, — 13141,
82.82, —41.41]7(deg) and ¢=[4], ¢I, $I]7=]0.
812, —1.789, 1.060, —0.977, 1.788, —0.729, 0.992,
0, 0.909]7(rad/sec). The manipulator dynamics
are integrated at an interval of 0.01 sec with the
fourth order Runge Kutta integration routine.
For a forward dynamic simulation of the three
cooperating manipulators, the dynamic models in
terms of system generalized coordinate set, are
required. First, the optimal joint torque sets, z,,
are obtained from either Eq. (20) or Eq. (36)
according to the employed joint torque optimiza-
tion scheme. Recalling Eq. (15), the effectively
equivalent joint torques, z,, are obtained accord-
ing to the selected minimum set of coordi-
nates(¢,)(selected as the three base joint coordi-
nates of each manipulator in this example). Then,
the joint accelerations are evaluated by solving
the dynamic equation based on the selected
minimum set of coordinates. The simulation
results of the joint velocity norm, the acceleration
norm, and the torque norm trajectories are given
for each algorithm, and for both the undamped
and damped cases. The units of the plotted veloc-
ity, acceleration and torque norms are (rad/sec)?,
(rad/sec?)? and (Nm)?, respectively.

The simulation results, seen in Figs. (3)~(14),
show generally similar characteristics to the
results of the single redundant manipulator case
in Kang and Freeman(1993) with respect to the
global torque minimization capability, the result-
ing stability, and the convergence to a certain null
space damped joint trajectory. From comparison
of Figs. (3)~(5) and Figs. (9)~(11), however, it
is noted that the undamped NJM scheme gener-
ally leads to stable motion and torque trajectories
during the simulation interval(4 sec), while the

1200 [T T T [T
Vv [ /

800

600

300

g

T

0 0.5 1 1.5
Time

Fig. 3 Velocity norm trajectory of undamped

JTM(K,=0)

AT
/AL,

250

Fig. 4 Acceleration norm trajectory of undamped

JTM(K ,=0)

30000 T T {_,. )
Tt
20000 i 3
10000 [ \_\_[ ‘ fad \_\\J\—\J p!
r 3. 1
0 Diwuaus 1 1 2

0 0.5 1 1.5

Time
Fig. 5 Torque norm trajectory of undamped JTM
(K;=0)

undamped JTM scheme easily deviates from the
desired system performance. For the single redun-
dant manipulator case, both undamped schemes
show the same level of stability problems. The
global characteristics(i. e., the global minimiza-
tion of the constrained Lagrangian) of the un-
damped NJM scheme are prominently illustrated
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Fig. 6 Velocity norm trajectory of null
damped JTM(K ,=200)
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Fig. 7 Acceleration norm trajectory of null sace
damped JTM(K,=200)
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Fig. 8 Torque norm trajectory of null space damped
JTM(K ,==200)

in the multiple cooperating redundant manipula-
tor case, compared to the results of the undamped
JTM scheme. However, the motion and torque
trajectories of the undamped NJM(Figs. (9)
~(11)) reveal, via the increases in the velocity,

3oh,.,.l.r.,,,,..

o R i
v VUV\

LN A

10
i} i H i H 1
0 1 2 3 4
Time
Fig. 9 Velocity norm trajectory of undamped
NIM(K,=0)
600 [TTTTTTT T T T T T
aa
400 | ﬂw \\]A\
200 | /\ k/\v S A, ]
]
0 1 1 b
0 1 2 3 4
Time
Fig. 10 Acceleration norm trajectory of undamped
NIM(K ,=0)

acceleration, and torque norms, that they are
deteriorating the desired system performance,
even though at a slow rates. Therefore, the stabil-
ity of algorithms using the transpose of Jacobian
among load distribution schemes can not be
guaranteed in case of redundant situation, in
order to map the optimally distributed opera-
tional forces(or contact forces/moments) to each
individual manipulator. Such load distribution
schemes might include the all of the first category
in case of heavy object load and some of the third
one in Sec. l.

The elimination of the stability problem is
accomplished by adding fictitious dissipating
forces, without affecting the operational forces, to
the undamped solutions. Figs. (6)~(8) and Figs.
(12) ~(14) demonstrate the effectiveness of this
approach. From the comparison of those results,
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Fig. 11 Torque norm trajectory of undamped
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Fig. 12 Velocity norm trajectory of null
damped NJIM(K,=5)

space

it is concluded that the null space damped natural
joint motion(NDNJM) scheme is superior to the
null space damped
minimization(NDJTM) scheme with respect to
the global torque minimization capability and the
resulting stability. In addition, the NDJTM
scheme had a much smaller range of damping
gains yielding a stable response than did the
NDNIJM scheme, and also, led to a torque peak
and high speed joint motion in its initial stage.
Those problems were also observed in the
NDJTM scheme for single redundant manipula-
tors. Therefore, the NDNJM scheme is deemed
more appropriate for joint torque optimization of
the multiple cooperating redundant manipulator

joint torque

system.

Hee-Jun Kang
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Fig. 13 Acceleration norm trajectory of null space
damped NIM(K ,=5)
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Fig. 14 Torque norm trajectory of null space damped
NIM(K,=S5)

6. Conclusion

In this paper, joint torque optimization for
multiple cooperating redundant manipulators rig-
idly handling a common object was considered.
This work focused on finding the optimal and
stable distribution scheme of the operational
forces of a multiple redundant manipulator sys-
tem to the individual manipulators. Two un-
damped/damped joint torque optimization
schemes(local joint torque minimization and nat-
ural joint motion) were formulated and compared
with respect to the global torque minimization
capability and the resulting stability. From the
simulation results of a system of three cooperating
redundant manipulators, the null space damped



Stable Joint Torque Optimization for Multiple Cooperating Redundant Manipulator System 111

natural joint motion(NDNJM) scheme is deemed
best among the considered schemes for the desired
system performance. Additionally, the condition
for the distribution of the operational forces
required to drive the given system along natural
joint motion trajectory was addressed. The ten-
dency to instability of natural joint motion was
shown that the direct use of the transpose of
Jacobian, in order to map the optimally distribut-
ed operational forces(or contact forces/moments)
to each individual manipulator, seems to be
dangerous in cased of redundant situation.
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APPENDIX
1. Operational Space Dynamic Model-
ing of Multiple Cooperating Re-
dundant Manipulators Including
Joint Motor Stiffness

Assume that the actuated joints in the multiple
cooperating redundant manipulator have their
own joint motor stiffness, which is solely depen-
dent on the joint motor characteristics. The stiff-
ness matrix of the ;% manipulator can be modeled
as [ K] Including the effects of the stiffness, the
equations of motion of the given system, con-
strained by a predefined operational space trajec-
tory, can be obtained by globally minimizing the
constrained Lagrangian. Using the two mx1
vectors of Lagrange multipliers, A, and 7;, respec-
tively, for the ;% manipulator, the constrained
Lagrangian, [, can be written as

L=T—Ul-U2+ é:l/mfl-((;s,-)» %)
+ ;nz(mbﬁau) (Al-1)

where the kinetic energy of the given system is
given by

L . .
T= ig%#H%]qﬁi (A1-2)

and the potential energy due to joint deflections,
8(151" is

L
Ul= ig%&b?[.K;z]aqsf, (A1-3)

and

{/2=potential energy from gravity forces,
respectively.
The objective function, /, of the current optim-
ization problem is given by

= / det.

Using the Calculus of Variations, the necessary
conditions for minimizing / are given by

o) (5g)=0 ()0

(3a5)=0 e (55:)-0

=12, L

(Al-4)

(A1-5)

By substituting the constrained Lagrangian in Eq.
(Al-1) into the conditions in (Al-5) and making
some simplifications, the necessary conditions in
Eq.(A1-5) can be written as

L2815+ Ctoae 60— (20 )o6.)m=170
i=1,2 - L (A1-6)
where

Clé ‘751') z(%[ifw])(ﬁ.i

=il )+ (%57)

]l¢l:ll—H(¢zs ¢1) Z.:]» 27 Tty L
(A1-7)
[K1opi=TIn: i=1,2, -, L (Al-8)
and
Jibp:i=0u i=1,2, -, L (A1-9)

Adding Eq.(A1-8) to (A1-6) yields
[11;¢]¢1+ C(¢1s ¢l)
k5180, ((G5 )66:)n= TG+ 7,
=1,2, -, L (A1-10)



112 Hee-Jun Kang

Multiplying both sides by J,[.[5 ]! yields

jl‘$1'+]i[i[¢;k¢]il{C(¢u ¢ )
+Lislon—((-95)o8: ).
:]z'[i];k¢]7lfz'r(/11+77i)'

Replacing J;#, with Eq.(A1-7) yields
i —H(gi ¢+ LLL3]{Cloo 60
“Lkzlov—((G5) o)

=T L] TGt 7). (A1-12)
Multiplying both sides by (J[.J3%]"'JD™' and
using the transpose of the pseudo-inverse,
(I =L L3 TD L8] yield‘s
(Az—’_ ”1):(]1[1];)‘:?]71]17‘)‘1(.7/{‘H(¢u sz))
+(JDTC(ps @)
HJD K306 — (DT
GIf AV
(55 oo )
i=1,2, -, L (A1-13)

Using Eq.(A1-8), with the assumption that [ K]

be a nonsingular matrix, the third term of Eq.

(A1-13) becomes

(ST K 200 =D)L K ) K] T
=7, (Al-14)

(Al-11)

Thus, the operational forces of the ;% manipula-
tor, F, can be interpreted as

Fz':/iz‘—"_Ui:[i]z;ku]ii+z'cu+isu (AI'IS)

where the operational inertia matrix of the ;*
manipulator is

[L)=CLd S]]
and the operational Coriolis,
gravity force vector of the ;* manipulator is

=(J1)Clpss $)—[dEIH (P b2
(A1-17)

(Al-16)

centripetal and

with the operational spring forces of the ith
manipulator being

su=<1/r)f([f1<:¢]a¢ﬁ<( o )arzs )
(IO KEH56) =(JDTS,. (A1-18)

The operational forces of the total multiple
cooperating manipulator system can therefore be
expressed as

F= ;F,-:mu]m CutS.  (A1-19)

where the effective inertia of the given system is

[72)= SGL121 7D (A1-20)

and the operational Coriolis, centripetal and

gravity forces of the given system is

L .
;Z‘{(z]+ Tc(¢” ¢) [Iz;ku]H(qua ¢z)}
(A1-21)
with the operational spring forces of the given
system being

Su= S(JN"Ss (A1-22)

Rewriting Eqs. (A1-13) and (Al1-15) with J,;¢,=
Jddd) (te— C($ir $:)—:S,), the unique func-
tional relationship which maps the joint torque
set of the ;% manipulator into the corresponding
operational forces is expressed as

Fi=(x-]1+)7ir¢-
According to Eq. (Al-19), the unique functional

relationship which maps the joint torque set of
the total system into the operational forces is

(A1-23)

expressed as

F=SF= S a=liT (A124)

with [ J7]7=[( 1]1 Yoo (JH)T (I

and r,=[,7f---:td- Lz‘g]r.

2. Effectively Equivalent Operational
Stiffness Matrix of Multiple
Cooperating Redundant Manipula-

tors

From Egs.(Al-14) and (Al1-18), the effective
operational spring force of the ;% manipulator,
Fis 1s given by

(A

Solving for 5, from Eqgs.(A1-8) and (A1-9) yields
771': (]i[z'K;}]i]]iT)Alau :[I'Ku*ll]l,all (A2-2)

where 7, and [,K},], are the effective operational
linear spring force and the effective operational

(A2-1)
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linear stiffness matrix, respectively, due to the
joint motor stiffness, [,A;], of the ;% manipula-
tor.

Employing the second order KIC matrix and
the generalized scalar product(®) seen in Free-
man(1988), the second term of Eq. (A2-1) can be
written as

(3 )oo)
=(JH)(F[HE)) 6. (A2-3)

The right hand side of Eq. (A2-3) might be inter-
preted as nonlinear spring force mapped in opera-
tional space of joint nonlinear spring forces,
(p°[:HE)) 8¢ like mapping the centrifugal, Cor-
iolis and gravity forces to the corresponding
operational forces. The nonlinear joint spring
force might result from the antagonistic effect of
the manipulator nonlinear geometry between the
effective joint spring torques and the physical
spring forces. Therefore, the antagonistic joint
stiffness is defined as

(K la= (][ :H§s ). (A2-4)
Combining Egs.(A1-8) and (A2-2), the infinitesi-
mal displacement relationship between §¢; and
du can be expressed as

8¢i:[iK:¢]71]1'7[iK:u]L6u~

Then, the effective operational spring force in Eq.
(A2-1) becomes

Fis=[K&]6u=([.KL].+7)
(”zra[z'ng])
[iK;‘ﬁ]VI]iT[iK;u]L)au-

The operational spring force of the total system
can be obtained by adding the contributions of
the individual manipulators as

(A2-5)

(A2-6)

[szfu]) 81/{ .
(A2-7)

L
i=1

Fo=[K]ou= v.:lefs:(

Therefore, the effectively equivalent operational
stiffness matrix of the multiple cooperating redun-
dant manipulator system can be written as

[K2)= Z[Ka)= SULKSR]T D

L
+ SUD Ol LHEDLKS]

JITLKRI D (A2-8)
If 5u¢ is small enough, the nonlinear stiffness force
in Eq.(A2-1) can be neglected, since the forces are
proportional to(§z )2 And then, the effective
operational stiffness in Eq.(A2-6) can be replaced

by the effective linear operational stiffness :
L

[K:u] = I'Z;["K;;’]L

= SULKRID. (A2:9)

The derivation above for the effectively equiva-
lent operational stiffness allows the physical inter-
pretation of the operational force distribution
scheme shown in Eq. (38) of this paper.
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